Fixed Point Theorems of Compatible maps on Complete G-Metric space

Pardeep Kumar
Assistant Professor, Department of Mathematics
Government College for Girls, Sector-14, Gurugram

Abstract

In this paper common fixed point theorems of two compatible self-mappings on a complete G-Metric space is proved using rectangular inequality of G-Metric space.

Keywords: Compatible maps, Rectangular inequality, G-Metric space.

1. Introduction and preliminaries

Banach [3] proved a fixed-point theorem "Let (X, d) be a complete metric space. If T satisfies $\mathrm{d}(\mathrm{Tx}, \mathrm{Ty}) \leq \mathrm{kd}(\mathrm{x}, \mathrm{y})$ for each x , y in X where $0<\mathrm{k}<1$, then T has a unique fixed point in X ." Dhage [4] introduced D-metric spaces. Geometrically, a D-metric $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ represents the perimeter of the triangle with vertices x, y and z in $R \times R$. Mustafa and Sims [6] proved that most of the results of Dhage's D-metric spaces were not true. So, they introduced a new generalized metric space and called it as G-metric spaces. Further G.Jungck defined compatibility of pair of self mappings of a metric space.Some basic definitions and results in Gmetric spaces which are useful for proving the main result are as follows.

Mustafa and Sims defined G-metric spaces as a generalization of metric space.
Definition 1.1 [7] "Let $\mathrm{G}: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}^{+}$be a function on a non-empty X satisfying
(G-1) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ if $\mathrm{x}=\mathrm{y}=\mathrm{z}$,
(G-2) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(G-3) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$,
(G-4) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{G}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{G}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\ldots$ (symmetry in all three variables),
(G-5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$, (rectangle inequality).
The function G is called a generalized metric or more specifically, a G-metric on Xand the pair (X, G) is called a G-metric space."

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition 1.2 [7] "A sequence $\left\{x_{n}\right\}$ of points in G-metric space X is said to be
G-convergent to x if $\lim _{m, n \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$; i.e. for each $\in>0$ there exists a positive integer N_{1} such that $G\left(x, x_{n}, x_{m}\right)<\in$ for all $m, n \geq N_{1}$. We say x is the limit of the sequence and write $x_{n} \rightarrow$ x or $\lim _{n \rightarrow \infty} x_{n}=x$."
Theorem 1.3 [7] "The following are equivalent in a G-metric space:
(i) $\left\{x_{n}\right\}$ is G-convergent to x;
(ii) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$;
(iii) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$;
(iv) $\mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{m}, \mathrm{n} \rightarrow \infty$."

Definition 1.4 [7]"Let (X, G) be a G-metric space. A sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is called
G-Cauchy if, for each $\in>0$ there exists a positive integer N_{1} such that

$$
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{l}\right)<\in \text { for all } \mathrm{n}, \mathrm{~m}, l \geq \mathrm{N}_{1} . "
$$

Theorem 1.5 [7]" The following are equivalent in a G-metric space :
(i) the sequence $\left\{x_{n}\right\}$ is G-Cauchy,
(ii) for each $\in>0$ there exists an N such that $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{l}\right)<\in$ for all $\mathrm{n}, \mathrm{m}, l \geq \mathrm{N}_{1} . "$

Theorem 1.6 [7]"The function $G(x, y, z)$ is jointly continuous in all three of its variables in a Gmetric space."
Definition 1.7 [7]"A G-metric space (X, G) is called a symmetric G-metric space if $G(x, y, y)=$ $G(y, x, x)$ for all x, y in X."

Theorem 1.8 [7]"Every G-metric space (X, G) defines a metric space $\left(X, d_{G}\right)$ by $d_{G}(x, y)=G(x, y, y)+G(y, x, x)$ for all x, y in X.
If (X, G) is a symmetric G-metric space, then

$$
\mathrm{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})=2 \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \text { in } \mathrm{X} .
$$

However, if (X, G) is not symmetric, then it follows from the G-metric properties that $3 / 2 \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{y}) \leq \mathrm{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}) \leq 3 \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{y})$ for all x , y in X ."
Theorem 1.9 [7]"A G-metric space (X, G) is G-complete if and only if $\left(X, d_{G}\right)$ is a complete metric space."

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Theorem 1.10 [7]"Let (X, G) be a G-metric space. Then, for any x, y, z, a in X, it follows that:
(i) if $G(x, y, z)=0$, then $x=y=z$;
(ii) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{y})+\mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{z})$;
(iii) $G(x, y, y) \leq 2 G(y, x, x)$;
(iv) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{G}(\mathrm{x}, \mathrm{a}, \mathrm{z})+\mathrm{G}(\mathrm{a}, \mathrm{y}, \mathrm{z})$;
(v) $G(x, y, z) \leq \frac{2}{3}(G(x, a, a)+G(y, a, a)+G(z, a, a)) . "$

Definition 1.11 [7]"Let f and g be single-valued self-mappings on a set X. If
$w=f x=g x$ for some $x \in X$, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g."

Definition 1.12 [5] "A pair (f, g) of self-mappings of a metric space (X, d) is said to be
 $=\mathrm{z}$ for some $\mathrm{z} \in \mathrm{X}$."

2. Main Results

Theorem 2.1 Let f and g be compatible self-maps of a complete G-metric space
(X, G) satisfying
(i) $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$;
(ii) $G(f p, f q, f r) \leq \alpha G(f p, g q, g r)+\beta G(g p, f q, g r)$

$$
+\gamma \mathrm{G}(\mathrm{gp}, \mathrm{gq}, \mathrm{fr})+\delta \mathrm{G}(\mathrm{gq}, \mathrm{gq}, \mathrm{fq})
$$

for all $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{X}$ and $\alpha, \beta, \gamma, \delta \geq 0$ with $0 \leq \alpha+3 \beta+3 \gamma+3 \delta<1$;
(iii) one of f or g is continuous.

Then f and g have a unique common fixed point in X .
Proof. Let α_{0} be an arbitrary point in X. Since $f(X) \subseteq g(X)$, one can choose a point α_{1} in X such that $\mathrm{f} \alpha_{0}=\mathrm{g} \alpha_{1}$, In general one can choose $\alpha_{\mathrm{n}+1}$ such that
$t_{\mathrm{n}}=\mathrm{f} \alpha_{\mathrm{n}}=\mathrm{g} \alpha_{\mathrm{n}+1, \mathrm{n}}=0,1,2, \ldots$.
From (ii), we have

$$
\begin{aligned}
& \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \alpha \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}+1}, \mathrm{~g} \alpha_{\mathrm{n}+1}\right)+\beta \mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{~g} \alpha_{\mathrm{n}+1}\right) \\
& +\gamma \mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right)+\delta \mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}+1}, \mathrm{~g} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \\
& =\alpha \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+\beta \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}}\right)
\end{aligned}
$$

Vol. 7 Issue 11, November 2018,
ISSN: 2320-0294 Impact Factor: 6.765

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
+\gamma \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right)+\delta \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right)
$$

$\leq \alpha \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+\beta \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}}\right)$

$$
+\gamma \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right)+\delta \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right)
$$

$$
\begin{equation*}
=(\beta+\gamma+\delta) \mathrm{G}\left(\mathrm{f} \alpha_{n-1}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right) \tag{2.1}
\end{equation*}
$$

Using rectangular inequality of G-metric space, we have

$$
\begin{align*}
& \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \\
& \leq \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+2 \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \tag{2.2}
\end{align*}
$$

Using (2.1) in (2.2) we have

$$
\begin{aligned}
& \quad(1-2 \beta-2 \gamma-2 \delta) \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq(\beta+\gamma+\delta) \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) \\
& \text { i.e. } \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \frac{(\beta+\gamma+\delta)}{1-2(\beta+\gamma+\delta)} \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) \\
& \qquad=\mathrm{qG}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) \text {, where } \mathrm{q}=\frac{(\beta+\gamma+\delta)}{1-2(\beta+\gamma+\delta)}<1 .
\end{aligned}
$$

Repeatedly, we have

$$
\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \mathrm{q}^{\mathrm{n}} \mathrm{G}\left(\mathrm{f} \alpha_{0}, \mathrm{f} \alpha_{1}, \mathrm{f} \alpha_{1}\right)
$$

Therefore, for all $\mathrm{n}, \mathrm{m} \in \mathrm{N}, \mathrm{n}<\mathrm{m}$, we have by rectangular inequality,

$$
\begin{aligned}
& \mathrm{G}\left(t_{\mathrm{n}}, t_{\mathrm{m}}, t_{\mathrm{m}}\right) \leq \mathrm{G}\left(t_{\mathrm{n}}, t_{\mathrm{n}+1}, t_{\mathrm{n}+1}\right)+\mathrm{G}\left(t_{\mathrm{n}+1}, t_{\mathrm{n}+2}, t_{\mathrm{n}+2}\right)+\ldots+\mathrm{G}\left(t_{\mathrm{m}-1}, t_{\mathrm{m}}, t_{\mathrm{m}}\right) \\
& \leq\left(\mathrm{q}^{\mathrm{n}}+\mathrm{q}^{\mathrm{n}+1}+\ldots+\mathrm{q}^{\mathrm{m}-1}\right) \mathrm{G}\left(t_{0}, t_{1}, t_{1}\right) . \\
& \leq \frac{\mathrm{q}^{\mathrm{n}}}{(1-\mathrm{q})} \mathrm{G}\left(t_{0}, t_{1}, t_{1}\right) .
\end{aligned}
$$

As $\mathrm{n}, \mathrm{m} \rightarrow \infty$, we have $\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \mathrm{G}\left(t_{\mathrm{n}}, t_{\mathrm{m}}, t_{\mathrm{m}}\right)=0$.
Thus $\left\{t_{\mathrm{n}}\right\}$ is a G-Cauchy sequence in complete G-metric space X , therefore there exists a point s
$\in X$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f} \alpha_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g} \alpha_{\mathrm{n}+1}=\mathrm{s}$.
Since the mapping f or g is continuous and let it be g .
Therefore $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{gf} \alpha_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{gg} \alpha_{\mathrm{n}+1}=\mathrm{gs}$.
Further, f and g are compatible, therefore

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{G}\left(\mathrm{fg} \alpha_{\mathrm{n}}, \mathrm{gf} \alpha_{\mathrm{n}}, \mathrm{gf} \alpha_{\mathrm{n}}\right)=0 \text { implies that } \lim _{\mathrm{n} \rightarrow \infty} \mathrm{fg} \alpha_{\mathrm{n}}=\mathrm{gs} .
$$

Setting $\mathrm{p}=\mathrm{g} \alpha_{\mathrm{n}}, \mathrm{q}=\alpha_{\mathrm{n}}$ and $\mathrm{r}=\alpha_{\mathrm{n}}$, in (ii), we have

Vol. 7 Issue 11, November 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{fg} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) \leq \alpha \mathrm{G} & \left(\mathrm{fg} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}\right)+\beta \mathrm{G}\left(\mathrm{gg} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}\right) \\
& +\gamma \mathrm{G}\left(\mathrm{gg} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+\delta \mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) .
\end{aligned}
$$

Letting $\mathrm{n} \rightarrow \infty$, we have $\mathrm{gs}=\mathrm{s}$.
Again from (ii), we have
$\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{fs}, \mathrm{fs}\right) \leq \alpha \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{gs}, \mathrm{gs}\right)+\beta \mathrm{G}\left(\mathrm{g} \alpha_{\mathrm{n}}, \mathrm{fs}, \mathrm{gs}\right)$
$+\gamma \mathrm{G}\left(\mathrm{g} \alpha_{\mathrm{n}}, \mathrm{gs}, \mathrm{fs}\right)+\delta \mathrm{G}(\mathrm{gs}, \mathrm{gs}, \mathrm{fs})$.
Letting $\mathrm{n} \rightarrow \infty$, we have $\mathrm{fs}=\mathrm{s}$.
Therefore, $\mathrm{fs}=\mathrm{gs}=\mathrm{s}$ i.e. s is a common fixed point of f and g .
Uniqueness: We assume that $s_{1}(\neq s)$ be another common fixed point of f and g.
Then $G\left(s, s_{1}, s_{1}\right)>0$ and

$$
\mathrm{G}\left(\mathrm{~s}, \mathrm{~s}_{1}, \mathrm{~s}_{1}\right)=\mathrm{G}\left(\mathrm{fs}^{2}, \mathrm{fs}_{1}, \mathrm{fs}_{1}\right)
$$

$\leq \alpha \mathrm{G}\left(\mathrm{fs}, \mathrm{gs}_{1}, \mathrm{gs}_{1}\right)+\beta \mathrm{G}\left(\mathrm{gs}, \mathrm{fs}_{1}, \mathrm{gs}_{1}\right)+\gamma \mathrm{G}\left(\mathrm{gs}^{2}, \mathrm{gs}_{1}, \mathrm{fs}_{1}\right)$
$+\delta \mathrm{G}\left(\mathrm{gs}_{1}, \mathrm{gs}_{1}, \mathrm{fs}_{1}\right)$
$=(\alpha+\beta+\gamma) \mathrm{G}\left(\mathrm{s}, s_{1}, s_{1}\right)<\mathrm{G}\left(\mathrm{s}, s_{1}, s_{1}\right)$, a contradiction,
which proves that $\mathrm{s}=s_{1}$ and hence uniqueness.
Theorem 2.2 Let f and g be compatible self-maps of a complete G-metric space
(X, G) satisfying
(i) $f(X) \subseteq g(X)$;
(ii) $G(f p, f q, f r) \leq k \max \left\{\begin{array}{l}G(f p, g q, g r), G(g p, f q, g r), \\ G(g p, g q, f r), G(g q, g q, f q)\end{array}\right\}$,
for all $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{X}$ and $\mathrm{k} \in\left[0, \frac{1}{3}\right)$;
(iii) one of f or g is continuous.

Then f and g have a unique common fixed point in X.
Proof. Let α_{0} be an arbitrary point in X . Since $\mathrm{f}(\mathrm{X}) \subseteq \mathrm{g}(\mathrm{X})$, one can choose a point α_{1} in X such that $\mathrm{f} \alpha_{0}=\mathrm{g} \alpha_{1}$, In general one can choose $\alpha_{\mathrm{n}+1}$ such that
$t_{\mathrm{n}}=\mathrm{f} \alpha_{\mathrm{n}}=\mathrm{g} \alpha_{\mathrm{n}+1, \mathrm{n}}=0,1,2, \ldots$.
From (ii), we have

Vol. 7 Issue 11, November 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$
\begin{gathered}
\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \mathrm{k} \max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{f} \alpha_{n}, \mathrm{~g} \alpha_{n+1}, \mathrm{~g} \alpha_{n+1}\right), \mathrm{G}\left(\mathrm{~g} \alpha_{n}, \mathrm{f} \alpha_{n+1}, \mathrm{~g} \alpha_{n+1}\right), \\
\mathrm{G}\left(\mathrm{~g} \alpha_{n}, \mathrm{~g} \alpha_{n+1}, \mathrm{f} \alpha_{n+1}\right), G\left(\mathrm{~g} \alpha_{n+1}, \mathrm{~g} \alpha_{n+1}, \mathrm{f} \alpha_{n+1}\right)
\end{array}\right\} \\
=\mathrm{k} \max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n}\right), \mathrm{G}\left(\mathrm{f} \alpha_{n-1}, \mathrm{f} \alpha_{n+1}, \mathrm{f} \alpha_{n}\right), \\
\mathrm{G}\left(\mathrm{f} \alpha_{n-1}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right), G\left(\mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right)
\end{array}\right\} \\
=\mathrm{k} \max \left\{0, \mathrm{G}\left(\mathrm{f} \alpha_{n-1}, \mathrm{f} \alpha_{n+1}, \mathrm{f} \alpha_{n}\right), \mathrm{G}\left(\mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right)\right\} \\
=\mathrm{k} \max \left\{\mathrm{G}\left(\mathrm{f} \alpha_{n-1}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right), G\left(\mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right)\right\} \\
=\mathrm{kG}\left(\mathrm{f} \alpha_{n-1}, \mathrm{f} \alpha_{n}, \mathrm{f} \alpha_{n+1}\right) .
\end{gathered}
$$

By rectangular inequality of G-metric space, we have

$$
\begin{aligned}
& \quad \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \\
& \leq \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)+2 \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) .
\end{aligned}
$$

Therefore from above inequality, we have
$\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \frac{\mathrm{k}}{(1-2 \mathrm{k})} \mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)$,

$$
=\mathrm{qG}\left(\mathrm{f} \alpha_{\mathrm{n}-1}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) \text {, where } \mathrm{q}=\frac{\mathrm{k}}{(1-2 \mathrm{k})}<1
$$

Continuingly, we have
$\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}+1}, \mathrm{f} \alpha_{\mathrm{n}+1}\right) \leq \mathrm{q}^{\mathrm{n}} \mathrm{G}\left(\mathrm{f} \alpha_{0}, \mathrm{f} \alpha_{1}, \mathrm{f} \alpha_{1}\right)$.
Therefore, for all $\mathrm{n}, \mathrm{m} \in \mathrm{N}, \mathrm{n}<\mathrm{m}$, we have by rectangular inequality

$$
\begin{aligned}
& \mathrm{G}\left(t_{\mathrm{n}}, t_{\mathrm{m}}, t_{\mathrm{m}}\right) \leq \mathrm{G}\left(t_{\mathrm{n}}, t_{\mathrm{n}+1}, t_{\mathrm{n}+1}\right)+\mathrm{G}\left(t_{\mathrm{n}+1}, t_{\mathrm{n}+2}, t_{\mathrm{n}+2}\right)+\mathrm{G}\left(t_{\mathrm{n}+2}, t_{\mathrm{n}+3}, t_{\mathrm{n}+3}\right) \\
& \quad+\ldots+\mathrm{G}\left(t_{\mathrm{m}-1}, t_{\mathrm{m}}, t_{\mathrm{m}}\right) \\
& \leq\left(\mathrm{q}^{\mathrm{n}}+\mathrm{q}^{\mathrm{n}+1}+\ldots+\mathrm{q}^{\mathrm{m}-1}\right) \mathrm{G}\left(t_{0}, t_{1}, t_{1}\right) . \\
& \leq \frac{\mathrm{q}^{\mathrm{n}}}{(1-\mathrm{q})} \mathrm{G}\left(t_{0}, t_{1}, t_{1}\right) .
\end{aligned}
$$

As $\mathrm{n}, \mathrm{m} \rightarrow \infty$, we have $\lim _{\mathrm{m}, \mathrm{n} \rightarrow \infty} \mathrm{G}\left(\mathrm{t}_{\mathrm{n}}, \mathrm{t}_{\mathrm{m}}, \mathrm{t}_{\mathrm{m}}\right)=0$.
Thus $\left\{t_{n}\right\}$ is a G-Cauchy sequence in complete G-metric space X , therefore, there exists a point $\mathrm{s} \in X$ such that $\lim _{\mathrm{n} \rightarrow \infty} t_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f} \alpha_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g} \alpha_{\mathrm{n}+1}=\mathrm{s}$.

Since the mapping f or g is continuous and let it be g , therefore
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{gf} \alpha_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{gg} \alpha_{\mathrm{n}+1}=\mathrm{gs}$.
Further, f and g are compatible,therefore,

Vol. 7 Issue 11, November 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{G}\left(\mathrm{fg} \alpha_{\mathrm{n}}, \operatorname{gf} \alpha_{\mathrm{n}}, \mathrm{gf} \alpha_{\mathrm{n}}\right)=0$ implies that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{fg} \alpha_{\mathrm{n}}=\mathrm{gs}$.
Setting $\mathrm{p}=\mathrm{g} \alpha_{\mathrm{n}}, \mathrm{q}=\alpha_{\mathrm{n}}$ and $\mathrm{r}=\alpha_{\mathrm{n}}$ in (ii), we have

$$
\mathrm{G}\left(\mathrm{fg} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right) \leq \mathrm{k} \max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{fg} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}\right), \mathrm{G}\left(\mathrm{gg} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}\right), \\
\mathrm{G}\left(\mathrm{gg} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right), \mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{f} \alpha_{\mathrm{n}}\right)
\end{array}\right\} .
$$

Letting as $\mathrm{n} \rightarrow \infty$, we have
$\mathrm{G}(\mathrm{gs}, \mathrm{s}, \mathrm{s}) \leq \mathrm{k} \max \{\mathrm{G}(\mathrm{gs}, \mathrm{s}, \mathrm{s}), \mathrm{G}(\mathrm{gs}, \mathrm{s}, \mathrm{s}), \mathrm{G}(\mathrm{gs}, \mathrm{s}, \mathrm{s})\}$ implies, $\mathrm{gs}=\mathrm{s}$.
Again from (ii), we have

$$
\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{fs}, \mathrm{fs}\right) \leq \mathrm{k} \max \left\{\begin{array}{c}
\mathrm{G}\left(\mathrm{f} \alpha_{\mathrm{n}}, \mathrm{gs}, \mathrm{gs}\right), \mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{fs}, \mathrm{gs}\right), \\
\mathrm{G}\left(\mathrm{~g} \alpha_{\mathrm{n}}, \mathrm{gs}, \mathrm{fs}\right), \mathrm{G}(\mathrm{gs}, \mathrm{gs}, \mathrm{fs})
\end{array}\right\} .
$$

Letting as $\mathrm{n} \rightarrow \infty$, we have

$$
\mathrm{G}(\mathrm{~s}, \mathrm{fs}, \mathrm{fs}) \leq \mathrm{k} \max \left\{\begin{array}{l}
\mathrm{G}(\mathrm{~s}, \mathrm{~s}, \mathrm{~s}), \mathrm{G}(\mathrm{~s}, \mathrm{fs}, \mathrm{~s}), \\
\mathrm{G}(\mathrm{~s}, \mathrm{~s}, \mathrm{fs}), \mathrm{G}(\mathrm{~s}, \mathrm{~s}, \mathrm{fs})
\end{array}\right\}
$$

$=\mathrm{kG}(\mathrm{s}, \mathrm{s}, \mathrm{fs}) \leq 2 \mathrm{k} \mathrm{G}(\mathrm{s}, \mathrm{fs}, \mathrm{fs})$ which is not possible.
And so, $\mathrm{G}(\mathrm{s}, \mathrm{fs}, \mathrm{fs})=0$, that is $\mathrm{fs}=\mathrm{s}$.
Therefore, $\mathrm{fs}=\mathrm{gs}=\mathrm{s}$ i.e. s is a common fixed point of f and g .
Uniqueness: We assume that $s_{1}(\neq \mathrm{s})$ be another common fixed point of f and g .
Then $\mathrm{G}\left(\mathrm{s}, s_{1}, s_{1}\right)>0$ and

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{~s}, s_{1}, s_{1}\right) & =\mathrm{G}\left(\mathrm{fs}, \mathrm{fs}_{1}, \mathrm{fs} s_{1}\right) \\
& \leq \mathrm{k} \max \left\{\begin{array}{l}
\mathrm{G}\left(\mathrm{fs}, \mathrm{gs} s_{1}, \mathrm{gs} s_{1}\right), \mathrm{G}\left(\mathrm{gs}, \mathrm{fs}, \mathrm{gs} s_{1}\right), \\
\mathrm{G}\left(\mathrm{gs}, \mathrm{gs} s_{1}, \mathrm{fs} s_{1}\right), \mathrm{G}\left(\mathrm{gs}, \mathrm{~g} s_{1}, \mathrm{fs} s_{1}\right)
\end{array}\right\}
\end{aligned}
$$

$=\mathrm{kG}\left(\mathrm{s}, s_{1}, s_{1}\right)<\mathrm{G}\left(\mathrm{s}, s_{1}, s_{1}\right)$, a contradiction,
which proves that $\mathrm{s}=s_{1}$ and hence uniqueness.

Vol. 7 Issue 11, November 2018,
ISSN: 2320-0294 Impact Factor: 6.765
Journal Homepage: http://www.ijmra.us, Email: ijesmj@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed \& Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

References

[1]. M. Aamri and D. El.Moutawakil , Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), p.181-188.
[2]. M. A. Al-Thagafi and N. Shahzad, Generalized I-non expansive self-maps and invariant approximations, Acta Math. Sinica, 24 (2008), p. 867-876.
[3]. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux èquationsintegrales, Fund. Math., 3 (1922), p. 133-181.
[4]. B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Cal.Math. Soc., 84 (1992), p. 329-336.
[5]. G. Jungck, Compatible mappings and common fixed points, Int. J. Math.Math. Sci. Vol.,9 (1986), p. 771-779.
[6]. Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceedingsof International Conference on Fixed Point Theory and Applications, Yokohama Publishers, Valencia Spain, July 13-19 (2004), 189-198.
[7]. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J.Nonlinear Convex Anal., 7 (2006), p. 289-297.
[8]. Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric space, Fixed Point Theory and Applications, 2009, Article I.D. 917175.
[9]. Z. Mustafa and H.Obiedat and F.Awawdeh, Some fixed point theorems for mappings on complete G-metric spaces, Fixed point theorey and applications,12(2008), Article I. D. 189870 .
[10]. Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed points results in Gmetric Spaces, Int. J. Math. Math. Sci., 2009, Article ID. 283028, 10.

